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Why do we need uncertainty quantification?

explainability

understanding applicability domain and limitations

application in multi-disciplinary settings

® use in downstream tasks, e.g., active learning
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Models with uncertainty quantification

bagging

ensembles | snapshot ensembles

deep ensembles
MC dropout

VAE

Bayes by Backprop

Laplace's approximation
deep evidential regression

MVE conformal prediction
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Metrics for uncertainty quantification

[Performance]

miscalibration area

Z-variance error

error correlation
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Application to compound potency prediction
Data:
® potency of compounds in inhibition (regression)

® extracted from ChEMBL33
® extensive curation

Training pipeline:

® compounds represented using binary fingerprints

® gridsearch for hyperparameter optimization
® 10-fold cross-validation

The following results are taken from:
Roth, J. P. & Bajorath, J. Sci Rep 14, 6536 (2024).
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Performance results
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UQ results: Error correlation
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UQ results: Miscalibration area
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UQ results: Calibration across potency
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Conclusion

® ensembles of conventional ML models can be used for
uncertainty quantification

® NN based methods did not exhibit correlation between
prediction error and uncertainty

® single metrics for the assessment and comparison of
uncertainty quantification are often limited in their
interpretability

® data distribution influences the quality of uncertainty
quantification (model and data dependent)
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Outlook

¢ understanding of error sources (data-based and model-based)
® combination of different approaches
® e.g., building a separate error model
® establishing viable metrics for comparison of models with
uncertainty quantification

® evaluating benchmark sets for proper comparison of models
and metrics
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