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Why do we need uncertainty quantification?

• explainability
• understanding applicability domain and limitations
• application in multi-disciplinary settings
• use in downstream tasks, e.g., active learning
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Models with uncertainty quantification

ensembles
bagging

deep ensembles

snapshot ensembles

Bayesian
MC dropoutBayes by Backprop

VAELaplace’s approximation

otherMVE

deep evidential regression

conformal prediction
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Metrics for uncertainty quantification

Performance UQ

NLL
RMSE

R2

MAE

MAPE
error correlation

miscalibration area

Z -variance error
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Application to compound potency prediction
Data:

• potency of compounds in inhibition (regression)
• extracted from ChEMBL33
• extensive curation

Training pipeline:
• compounds represented using binary fingerprints
• gridsearch for hyperparameter optimization
• 10-fold cross-validation

The following results are taken from:
Roth, J. P. & Bajorath, J. Sci Rep 14, 6536 (2024).
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Performance results
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• most models exhibit overall
accurate, stable, and
comparable performance

• MVE model is less accurate
and shows larger variance in
performance

• simple ML models meet
performance of neural
networks
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UQ results: Error correlation
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's • ensemble methods show
weak correlation between
true error and predicted
error

• NN based methods show no
correlation and large spread
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UQ results: Miscalibration area
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• ensembles exhibit smallest
miscalibration area

• MC Dropout model shows
worse calibration compared
to MVE

• MVE exhibits considerable
spread in calibration quality
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UQ results: Calibration across potency
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Conclusion

• ensembles of conventional ML models can be used for
uncertainty quantification

• NN based methods did not exhibit correlation between
prediction error and uncertainty

• single metrics for the assessment and comparison of
uncertainty quantification are often limited in their
interpretability

• data distribution influences the quality of uncertainty
quantification (model and data dependent)
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Outlook

• understanding of error sources (data-based and model-based)
• combination of different approaches

• e.g., building a separate error model
• establishing viable metrics for comparison of models with

uncertainty quantification
• evaluating benchmark sets for proper comparison of models

and metrics
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