SVEKER
.ExplainingSVM¶
- class SVEKER.ExplainingSVM(kernel_type='tanimoto', degree=3, gamma=1.0, coef0=0.0, no_player_value=0.0)¶
Base class for SVMs with exact Shapley values
- __init__(kernel_type='tanimoto', degree=3, gamma=1.0, coef0=0.0, no_player_value=0.0) None ¶
Initializes a SVM with exact Shapley values
- Parameters:
kernel_type (str) – Kernel to be used, must be in
['tanimoto', 'rbf', 'poly', 'sigmoid']
gamma (float) – Parameter \(\gamma\), only for Polynomial, RBF, Sigmoid kernel.
degree (float) – Parameter \(d\), only for Polynomial kernel, must be non-negative.
coef0 (float) – Parameter \(r\), only for Polynomial, Sigmoid kernel.
- shapley_values(x: ndarray)¶
Calculate the Shapley values for multiple query vectors.
- Parameters:
vector (np.ndarray) – Vector(s) to be explained using Shapley values
- Returns:
Shapley values for each feature in vector(s)
- Return type:
np.ndarray